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Inhomogeneous integral equation approach to pair and triple correlations
in a glass-forming simple liquid
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A simple model of glass-forming liquid modeled via Dzugutov’s pair potential is studied by means of the
triplet hypernetted chain approximation as formulated by Atf&dAttard, J. Chem. Phy83, 7301(1990].
This system, which is known to be mostly dominated by microscopic icosahedral ordering, eludes a correct
description in terms of classical two-body integral equation theories. However, it is found here that the simple
hypernetted chain approximation when applied at the three-particle level can yield a correct semiquantitative
description of both the pair and triplet structure of the supercooled state, capturing features which escape more
sophisticated closures implemented on the two-particle level.
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I. INTRODUCTION found that the observed solid structure was a monoatomic
dodecagonal quasicrystal. Quite recently, Roth and Denton
Icosahedral orderinglh) is known to play an essential [7] have carried out a detailed simulation and perturbation
role in the glass formation in simple systefis2]. However theory study of the solid phases of the Dzugutov potential.
in single-component systems, nucleation of crystallites This remarkably simple potential is perfectly suitable to
strongly competes with the glass transition and therefordde studied from the standpoint of liquid state theoretical
most metallic glasses presenting long-range icosahedral omethods. Preliminary calculations carried out by us indicate
dering turn out to be multicomponent systems, whose structhat when the system is well within the liquid phase domain
ture is mostly conditioned by the presence of short-rangéfar away from the glass transitinpnstandard integral equa-
chemical ordering. Nonetheless, in the early 1990s Dzugutotions like the reference hypernetted chain equation
[3] introduced a model pair potential which considerably fa-[8](RHNC), or the self-consistent Zerah-Hand®&\ZH) ap-
cilitated the study of the glass transition by means ofproximation can accurately reproduce the pair structure of
molecular-dynamic$MD) simulations stabilizing the short- the fluid, which is by no means surprising. However, when
range icosahedral ordering by precluding competing crystaleooling the liquid down below the melting point in such a
line configurations. This potential is relatively short rangedway the crystallization is precluded, we drive the system into
and is characterized by the presence of two repulsive rangesmetastable phase. This undercooled liquid is considered to
and one attractive region. This functional form is not toobe precursor of the glass transition and shows, as in glasses,
different from that of some metallic effective potentiéler a dominant short-range icosahedral ordefiBpwhich is ex-
instance, the aluminum potential proposed by Dagens, Rabited in the splitting of the second coordination shell and in
solt, and Taylof{4]) and in that sense it is not completely turn translates into the appearance of a marked shoulder in
unrealistic. Moreover, it has been suggested that colloidaihe second maximum of the pair-distribution function. This
interactions might be tuned to reproduce the functional fornfeature, which is strongly correlated with the glass transition
of the Dzugutov potential and thus finally render a colloidalin the Dzugutov liquid, cannot be captured by either the

glass. The explicit form of this Ih potential is RHNC or the ZH approximations. This is obviously due to
the lack of a proper bridge functigfiQ] (or functional, if
V(r)=uy(r)+ux(r), one is to use Rosenfeld’s universality principle of the bridge

functiona) reflecting the underlying symmetry of the system.
Undoubtedly a hard sphere fluid is a poor reference system
(1)  for an undercooled fluid with Ih ordering.
Moreover, it is clear that the way in which a closure re-
lation like the hypernetted chain approximati@ANC) in-
d corporates the pair potential into the formalism, is not ad-
B ex;{ _) r<b equate to account for the angular correlations which deviate
Up(r) = -b so much from the full symmetry of fcc-like or bec-like
0 r=b, phases. However, if a similar approximation is introduced at

r<a
r—a

c
A(r—™-B) ex;{—

uy(r)=

where the parameters, in reduced units, are collected in Table ~ 1ABLE |. Parameters of the Dzugutov pair potential.

l.

Aside from the initial studies in supercooled liqui® as
precursors of the glass transition, this model has also beerg 5.82 1.1 1.87 1.28 0.27 1.94
used in studies of the freezing transiti 6], where it was

m A c a B d b

1063-651X/2000/6@)/0112036)/$15.00 63011203-1 ©2000 The American Physical Society



E. LOMBA, S. JORGE, AND M. AVAREZ PHYSICAL REVIEW E 63 011203

F N B T B B S B s S B =1.60 (Ih normal liquid; (c) Ih pair potential atp* =0.88
andT* =0.50(lh supercooled liquidThe two potentials are
plotted together in Fig. 1.

- . The rest of the paper is sketched as follows. In Sec. Il we
summarize the essentials of the inhomogeneous integral
equation approach for two and three-body correlations and
. its numerical implementation is also discussed. Finally, com-
puter simulation details and our most significant results are
presented in Sec. lll.

II. INHOMOGENEOUS INTEGRAL EQUATION
APPROACH

A. The formalism

The source particle method of Perdui$] was applied by
Attard [11] in order to take advantage of the inhomogeneous
integral equation treatments so as to calculate triplet correla-
tion functions. Basically, it reduces to consider a tagged par-
1 T ticle as source of an external potential and then use an exact

1 15 2 relation between one- and two-particle properties in the pres-

r/c ence of external potentialgither the BG equatiohl14] or
one of the TZLMBW equationfgl3]). Three-particle proper-
Eq. (1) (solid line) and LJ(dashed ling are plotted together for the “‘?s are .evaluated by solving the_OZ gqugtlon .quplememed
sake of comparison. The latter one has been artificially shifted téN'th a given closure. The approxmatlon implicit n the clo-
illustrate the coincidence of both potentials around the minimum>4'€ Correspon_ds to the three-particle level and it th_us turns
and core region. out to be consmlerably more accurate when computing two-
particle properties. Some examples of the efficiency of this
) ] _approach using different closure relations for LJ and hard-

the three-particle level, even the simple HNC closure W'"sphere(HS) fluids can be found in Ref§15] and[17,18,
contain direct information regarding the competition be-respectively.
tween different Iayers or coordination shells for different As mentioned before, in this method a given partic|e in a
triplet configurations. Therefore, we have here explored theriplet is considered as the source of an external field, and is
inhomogeneous Ornstein-Zernik®Z) approach proposed therefore responsible for the inhomogeneities in the system
by Attard[11,12 to study three-body correlation using Per- that should reflect in the integral equation. One can then
cus source particle method. Within this approach, one canalculate density profiles and pair distribution functions con-
get the density profile, i.e., the new pair-correlation function ditioned to this particle being taken as a source. Since this
using an exact relation like the Triezenberg-Zwanzig-Lovett-source particle is identical to other system particles these
Mou-Buff-Wertheim (TZLMBW) equation[13] or the first ~quantities are actually two- and three-body properties of the
equation in the Born-Green hierarcliBG) [14]. Here we  fluid. . . _
have used the former alternative coupled with a HNC clo- The inhomogeneous OZ equation establishes the relation-
sure, which is known as HNC®r TZLMBW-HNC3) ap-  ship between the total correlation functio’(r,,r,) and
proach. the direct correlation functiongz)(rl,rz) in the presence of

We will see that the simple HNC closure, when applied atthe inhomogeneity,
the three-particle level, is able to capture features in the pair-

FIG. 1. The two pair potentials used in this work, 1h given by

correlation functionland even in the triplet distribution func- hgz)(rl,r2)=c§)2)(rl,r2)

tion) which escape two-particle approximations. For com-

parison we have also performed calculations for a truncated +j drap(r)ci(ry,r)hP(rar0). (2
Lennard-JonesLJ) fluid (R.=1.940, with o being the LJ

range parametgrfor the stateT*=KkgT/e=0.73 andp* Although the third particlésource particledoes not ex-

=po3=0.85 for which reference results were available inplicitly appear in the integral equation, it is implicit in the

the literaturg 15] and which happens to be very close to thenotationfy(r,,r,) which indicates that particles 1 and 2 are

corresponding thermodynamic state of interest in the supeisubject to the external potential induced by particle 0. As a

cooled Ih liquid[3]. This LJ system is obviously well be- consequence, the inhomogeneous pair functions obtained

haved and two-particle approximations yield already excelfrom Eqg. (2), ggz)(rl,rz) represent conditional probabilities

lent results. which can be used to calculate the three-body distribution
In summary, three different cases are presented in thifinction g,

work, namely(a) Truncated LJ potential gb* =0.85 and

T*=0.73 (LJ): (b) Ih pair potential atp* =0.88 andT* 9B ro.r1.r)=9@(rg@(r)gf(ri.r).  (3)
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while the inhomogeneous density profile will yield the bulk As long as three unknown functions are present in @&g.

pair-distribution function. two more equations are needed. One of them is the closure
In the present problem the system has axial symmetryelation connecting the pair potential and the direct correla-

because the external potential depends only on the separatition function, and the other is the density profile governed by

from the origin(source. The pair potentiaV(r,) [see Eq. the external field.

(1)], in the reference frame of the source particle, depends on Among the possible closures containing translationally in-

the distances of the particles from the source and the angleariant functions, and therefore suitable for this problem, the

between them. This axial symmetry makes possible to exdNC approximation has been used:

press the integral equation in terms of the polar coordinates

h(z)(rl,rz,012)=exp[h(2)(r1,r2,012)—C(2)(r1,r2,012)
—BV(ri,ry,019]1-1, (5

SA(ry,r2,019)=h@(rq,r5,0,)—c®(ry,r,,61,)

:f drap(ra)c@(ry,r4, 0100 (r4,15,604).
where 3= (ksT) ! is the inverse temperature. A hybridized
(4)  closure, the Zerah-Hans¢8f] approach,

_eXF[m(rlz)(_Uan(rlarz:912)+5(2)(r1,"2=912))]_1
m(rqp)

9(2)(r1,r21912):(1 ]exq_ﬁvrep(rlvrzralz)] (6)

was also used for the LJ case for which it was found to be gp(r,) aV(ry
very accurate. Herm(r ,) = 1—exp(—ary,) and the mixing =—pBp(ry) ar
parametera is obtained requiring thermodynamic consis- !
tency in the approximation at the two-particle level. The in- 1 % ) @) AV(ry)
teraction potential has been split into repulsivgr), and X fﬁldxfo drorap(ra)ht(ry,ra,x)x ar,
attractive,v 4(r), contributions using the Weeks-Chandler-

Andersen decompositidi9]. Following Attard[11], a Leg- (11)
endre transformation is applied to all the angular functions as

Once the Legendre transformation is applied, Edl) re-

) —2mBp(ry)

. 2n+1 1
fo= > f d(cos#)f(cosh)P,(cosh), (7) duces to
-1
ap(ry) aV(ryq)
- o, Per)—
f(coso)= >, f,P,(cosh), (8) 1 1
n=0
477,3P(f1)f°° 2 - aV(ryp)
—————— | drar5p(ro)hy(rq,r
by which the OZ decouples into 3 0o 2 2p(r2)Ne(r1.r2) ara
(12

ﬁn(rlvrz)_én(rlarz)

B. Numerical details

4o (= . "
- 2n+1f drgrCa(r1,ra)p(ra)hn(ra.ra). -
0 The Legendre transforms and the convolution in 8.

9) constitute the core of the computational costs in this type of
calculation. Following Attard we have used a discretized or-

The density profile has been evaluated via the TZLMBWthogonal version of the Legendre transform, where the nodes

relation[13] of the angular integration are defined by the roots of the
Legendre polynomiaP,(x), if the Legendre series include
Vp(ry)=—pBp(r)VV(ry) all P/(x) with I=<n. These transforms have been evaluated

using between 60 and 80 roots by means of the quick Leg-
endre transform algorithm suggested in REf]. The treat-
_'Bp(rl)f drap(ro)h(ry.ra VV(ry).  (10) ment of long ranges follows the ideas proposed by Attard
[12] and Fushiki[15], resorting to a replacement of the in-
After projection of the gradient onto the appropriate di-homogeneous distribution functions by their bulk phase
rection and integrating over the angular coordinates, the excounterparts beyond certain cutoff distancg(in this case
pression above reads r.=60).
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For simple cases, convergence is sufficiently fast using a 3F
mixing iterates algorithm, but for the stringent conditions
which correspond to a supercooled state, we had to resort to
a more effective numerical approach, namely the generalized _2F
minimal residual algorithm for nonlinear systems of equa- =
tions[20]. It basically considers the solution of =0 )
G[s]=s—M[s]=0, (13
whereG[ s] is a vector functional ani¥l represents the op- 0
erations involving the OZ equation supplemented by the clo- =
sure. The elements sfare the coefficients,(r,r,), thus 60
coefficients discretized over 150 grid points will use up 1/2 - 2
60x150x 150 words of memory. The previously defined s+
functions, in the (n+1)'" iteration is estimated by = 1=
Sie1=S T+ 6S (14 -
0

and §s is expanded in terms df orthogonal polynomials
which define search directiong;, j=1,...k, i.e., ds r/c
=3\ ap;, being po=—ro/||roll (ro=s—M[s]) and the
subsequenp; obtained by Gram-Schmidt orthogonalization.
The coefficientsa; are optimized so that the norm

FIG. 2. Pair-distribution functions for LJ system &t =0.73
(upper frame and Ih normal liquid case at* = 1.6 (lower frame,
obtained both from different theoretical approaches and MD com-

k puter simulation.

lIGIs]+ 2, a,Gls,.pi]l] (15 _

=1 using a Berendsen thermostat. The system was cooled with
_ y=410s"! from T* =1.6 down to the supercooled state.
is minimized.G(s;p) is the directional derivative d& at the The simulated pair-correlation functions for the LJ system
given points in the directionp. For the present problem the are shown in the upper frame of Fig. 2 together with various
optimal balance between storage and efficiency is achievegheoretical approaches used. One can see that the ZH ap-
using five search directions. Note that memory use has to bgroach is in extraordinary agreement with the simulation
optimized, since each search direction will occupy the sameata. If one implements the ZH approximation on the three-
amount of storage as each set of coefficidigs,,r,). particle level to obtain a corresponding ZH3 approach, the

As to the external TZLMBW equation, the Broyles mix- results are completely indistinguishable from the simple ZH.
ing iterative procedure has proven to be efficient enough tiNote that the mixing parameter in the ZH3 is obtained
guarantee convergence. The particle exchange symmetry from the two-particle approximation, since the calculation of
the inhomogeneous pair functions for a given configuratiorthe isothermal compressibility from the inhomogeneous ap-
with fixed source particle introduces some simplifications inproach is not accurate enouft?] to implement a thermo-
the calculation, and one of them is the reduction of memoryiynamic consistency loop.
requirements. Thus a typical single precision calculation us- The same can be said for the Ih pair potential in the liquid
ing 160 grid points for the two radial coordinates of the state T*=1.6), whose pair-distribution functions are de-
triplet configuration, 60 angular grid points and five searchpicted in the lower graph of Fig. 2. In the latter case one sees

directions requires about 45 Mb of storage. that the use of the HNC3 improves upon the pair HNC, as
was already established by Attafd2]. Nonetheless the
. RESULTS HNC3 is still outperformed by the ZH and RHNC approxi-
mations.

In this work, classical MD simulations sampling the ca-  Now when the system is cooled down the situation radi-
nonical ensembleNVT) were performed for comparison cally changes. First, the ZH equation is unable to reach ther-
purposes, making use of tie-PoLyY program[21]. All the  modynamic consistency achieving a minimum discrepancy
systems consisted of 1372 particles embedded in a cubic bayr =0, i.e., for the soft mean spherical approximation
with periodic boundary conditions. In particular, the LJ sys-(SMSA). These results together with a RHNC calculation
tem was simulated at constant reduced denpity; 0.85 and  ysing Lado’s free energy optimization criterium for the ref-
T*=0.73. The icosahedral system was simulated at constagkence hard-sphere fluid diameter, are presented in Fig. 3.
reduced densityp* =0.88 at bothT*=1.6 andT*=0.5, One immediately appreciates that the pair approximations
which correspond to a proper liquid and a supercooled statgompletely miss the clear shoulder appearing on the second
respectively. The latter was reached by a stepwise equilibcoordination sphere, feature which results from the cooling
rium cooling coupling the system to a heat bathTg{(t).  process. Now, on the three-particle level, we observed that
Then we cooled the system linearly in timE; (t) =T -yt, implementation of the SMSA yields rather poor results, not
with y being the cooling rate, antlthe simulation time, included in Fig. 3. This is not surprising given its linear
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FIG. 3. Pair-distribution functions for Ih supercooled liquid at e
T*=0.5, obtained both from different theoretical approacfsee
text) and MD computer simulations. ol
nature. On the other hand, the HNC3, although misses some- -05 . . .
what the intensity of the peaks, reproduces the exact position 1 2 y 3 4
and shape of the shoulder in the second coordination sphere. e

As mentioned before, this shoulder is a direct consequence FiG. 4. 7(r) calculated from the HNC3 approach is compared

of the cooling process and results from the preferential icosagith MD simulation results, both for the LJ case and the Ih super-
hedral ordering of the Dzugutov's supercooled systemcooled liquid.

which is not present either in the heighth or LJ liquids. It

seems now evident that a correct geometric description of a

. . of 7(r). This is further confirmed below, where triple corre-
supercooled structure of a glass-forming system requires ap-

proximations at the three-particle level, in particular since.atlons are directly analyzed and a better agreement is exhib-

. X . ited.
the icosahedral ordering strongly deviates from the hard- Another alternative to provide a 3D image of the short-

sphere high density liquid which furnishes the reference sys- ‘ .
tem in approximations like the RHNC. range topology of the systems under study is by calculating

In order to provide some insight into the triplet structure,the triplet correlation function of isosceles triangle configu-

we have analyzed the behavior of the functien,s,t)=In rations, i.e.,g™(r.s,6), W'th.r s, where ¢ is the angle
[99(r,s,)/g(r)g(s)g(t)]. The denominator of the argu- betweenr ands. These functions have also been computed

ment is nothing but Kirkwood’s superposition approximation

(KSA), i.e., the simplest approach fay®(r,s,t). Then 30 T

7(r,s,t) is essentially an excess triplet potential of mean

force if one considers that the KSA represents the low den- - u

sity (ideal) limit of the three-body correlations. The(r) o
=7(r,r,r), for equilateral triangle configurations, at dis- 201 o l’:‘NDé;fz-“) 1

tancesr corresponding to the positions of the first peaks of
g(r), are shown in Fig. 4 comparing the LJ liquid with the lh
supercooled case. The departurer@f) from zero measures
the correction to the KSA, a positive value means that the 10}
triplet is more probable than is predicted by the KSA, and on

the contrary, a negative value indicates that such triplets oc-

cur less frequently than predicted by the classical ansatz. In

the LJ liquid, the HNC3 results are in a good agreement with 0 . . . . .
simulation results particularly at short distances, confirming 0 60 120 180

the remarkable performance of this approximation for this 0

ftype of systenj12,1§. On the other _ha_nd, we observed that FIG. 5. Theoretical and simulation results of the triplet correla-
in the Ih supercooled case the deviations from the KSA argqp, function of isosceles triangle configurations for the LJ case are
strongly positive at short distances. This and other featuregiotted vs at ther values corresponding to the first two maxima of
of the 7(r) are qualitatively reproduced by the HNC3. The g(r) (see Fig. 2 Those values are specified within the legend box.
deviations, which are considerable, can mostly be ascribed tphe intensity ofg®)(r,r,6) for r,=2.06 has been multiply by 5 to

the discrepancies in the amplitude of thér), which are be plotted at the sameaxis scale as the one corresponding to the
magnified in the triple product occurring in the denominatorfirst coordination shell.

g¥a,r0)
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80 , , in the three-body correlation of the LJ fluid and the Ih super-
PV cooled case, in particular the maximum corresponding to the
60 1 HNC3' ] second coordination sphere correlations present around 100°
ol (90° in the LJ fluid is split in two (110°-120° and 80°-90°)
in the latter case. This, in principle, might be ascribed to the
2| larger coordination of the Ih supercooled liquid, and it is
correctly reproduced by the HNC3 approximation. It is not
0 obvious whether the five maxima ig®)(r,s,6) for the
gl second-neighbor shell can be correlated with the fivefold-
coordination characteristic of icosahedral ordering, but this
§6 " feature should nonetheless be born in mind for a more de-
oA tailed geometrical analysis.
e In summary, in this work we have analyzed the perfor-

mance of the inhomogeneous Ornstein-Zernike approach us-
ing a HNC closure to determine the pair and triplet structure
in a system characterized by an icosahedral short-range or-
T dering that considerably deviates from “classical” well be-
HNC3 ] haved liquids like the LJ or HS fluids. This type of system,
which proves difficult to tackle in terms of two-particle ap-
proximations, is amenable to be described by the HNC3 ap-
proach. This indicates that the three-body geometric infor-
. . mation implemented in the inhomogeneous closure is
0 60 120 180 essential for a correct description of this class of fluids and
0 (degrees) presumably glasses. Thus, this approach will be relevant to
FIG. 6. The same as Fig. 5 for the Ih supercooled case. For th@tUdY other glass-fo_rming _systems, in particular highly as_ym-
sake of clarity each value, corresponding to the first two maxima Metric and non additive mixtures. Work on these issues is in
of g(r) plus the position of the shoulder of the second pesde  Progress.
Fig. 3), are depicted from up to bottom framésee legend boxgs
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