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Inhomogeneous integral equation approach to pair and triple correlations
in a glass-forming simple liquid
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A simple model of glass-forming liquid modeled via Dzugutov’s pair potential is studied by means of the
triplet hypernetted chain approximation as formulated by Attard@P. Attard, J. Chem. Phys.93, 7301~1990!#.
This system, which is known to be mostly dominated by microscopic icosahedral ordering, eludes a correct
description in terms of classical two-body integral equation theories. However, it is found here that the simple
hypernetted chain approximation when applied at the three-particle level can yield a correct semiquantitative
description of both the pair and triplet structure of the supercooled state, capturing features which escape more
sophisticated closures implemented on the two-particle level.
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I. INTRODUCTION

Icosahedral ordering~Ih! is known to play an essentia
role in the glass formation in simple systems@1,2#. However
in single-component systems, nucleation of crystalli
strongly competes with the glass transition and theref
most metallic glasses presenting long-range icosahedra
dering turn out to be multicomponent systems, whose st
ture is mostly conditioned by the presence of short-ra
chemical ordering. Nonetheless, in the early 1990s Dzugu
@3# introduced a model pair potential which considerably
cilitated the study of the glass transition by means
molecular-dynamics~MD! simulations stabilizing the short
range icosahedral ordering by precluding competing crys
line configurations. This potential is relatively short rang
and is characterized by the presence of two repulsive ran
and one attractive region. This functional form is not t
different from that of some metallic effective potentials~for
instance, the aluminum potential proposed by Dagens,
solt, and Taylor@4#! and in that sense it is not complete
unrealistic. Moreover, it has been suggested that collo
interactions might be tuned to reproduce the functional fo
of the Dzugutov potential and thus finally render a colloid
glass. The explicit form of this Ih potential is

V~r !5u1~r !1u2~r !,

u1~r !5H A~r 2m2B! expS c

r 2aD r ,a

0 r>a,

~1!

u2~r !5H B expS d

r 2bD r ,b

0 r>b,

where the parameters, in reduced units, are collected in T
I.

Aside from the initial studies in supercooled liquids@3# as
precursors of the glass transition, this model has also b
used in studies of the freezing transition@5,6#, where it was
1063-651X/2000/63~1!/011203~6!/$15.00 63 0112
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found that the observed solid structure was a monoato
dodecagonal quasicrystal. Quite recently, Roth and Den
@7# have carried out a detailed simulation and perturbat
theory study of the solid phases of the Dzugutov potentia

This remarkably simple potential is perfectly suitable
be studied from the standpoint of liquid state theoreti
methods. Preliminary calculations carried out by us indic
that when the system is well within the liquid phase dom
~far away from the glass transition!, standard integral equa
tions like the reference hypernetted chain equat
@8#~RHNC!, or the self-consistent Zerah-Hansen@9#~ZH! ap-
proximation can accurately reproduce the pair structure
the fluid, which is by no means surprising. However, wh
cooling the liquid down below the melting point in such
way the crystallization is precluded, we drive the system i
a metastable phase. This undercooled liquid is considere
be precursor of the glass transition and shows, as in glas
a dominant short-range icosahedral ordering@3# which is ex-
hibited in the splitting of the second coordination shell and
turn translates into the appearance of a marked shoulde
the second maximum of the pair-distribution function. Th
feature, which is strongly correlated with the glass transit
in the Dzugutov liquid, cannot be captured by either t
RHNC or the ZH approximations. This is obviously due
the lack of a proper bridge function@10# ~or functional, if
one is to use Rosenfeld’s universality principle of the brid
functional! reflecting the underlying symmetry of the system
Undoubtedly a hard sphere fluid is a poor reference sys
for an undercooled fluid with Ih ordering.

Moreover, it is clear that the way in which a closure r
lation like the hypernetted chain approximation~HNC! in-
corporates the pair potential into the formalism, is not a
equate to account for the angular correlations which dev
so much from the full symmetry of fcc-like or bcc-lik
phases. However, if a similar approximation is introduced

TABLE I. Parameters of the Dzugutov pair potential.

m A c a B d b

16 5.82 1.1 1.87 1.28 0.27 1.94
©2000 The American Physical Society03-1
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the three-particle level, even the simple HNC closure w
contain direct information regarding the competition b
tween different layers or coordination shells for differe
triplet configurations. Therefore, we have here explored
inhomogeneous Ornstein-Zernike~OZ! approach proposed
by Attard @11,12# to study three-body correlation using Pe
cus source particle method. Within this approach, one
get the density profile, i.e., the new pair-correlation functio
using an exact relation like the Triezenberg-Zwanzig-Love
Mou-Buff-Wertheim ~TZLMBW ! equation@13# or the first
equation in the Born-Green hierarchy~BG! @14#. Here we
have used the former alternative coupled with a HNC c
sure, which is known as HNC3~or TZLMBW-HNC3! ap-
proach.

We will see that the simple HNC closure, when applied
the three-particle level, is able to capture features in the p
correlation function~and even in the triplet distribution func
tion! which escape two-particle approximations. For co
parison we have also performed calculations for a trunca
Lennard-Jones~LJ! fluid (Rc51.94s, with s being the LJ
range parameter! for the stateT* 5kBT/e50.73 andr*
5rs350.85 for which reference results were available
the literature@15# and which happens to be very close to t
corresponding thermodynamic state of interest in the su
cooled Ih liquid @3#. This LJ system is obviously well be
haved and two-particle approximations yield already exc
lent results.

In summary, three different cases are presented in
work, namely~a! Truncated LJ potential atr* 50.85 and
T* 50.73 ~LJ!; ~b! Ih pair potential atr* 50.88 andT*

FIG. 1. The two pair potentials used in this work, Ih given
Eq. ~1! ~solid line! and LJ~dashed line!, are plotted together for the
sake of comparison. The latter one has been artificially shifted
illustrate the coincidence of both potentials around the minim
and core region.
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51.60 ~Ih normal liquid!; ~c! Ih pair potential atr* 50.88
andT* 50.50 ~Ih supercooled liquid!.The two potentials are
plotted together in Fig. 1.

The rest of the paper is sketched as follows. In Sec. II
summarize the essentials of the inhomogeneous inte
equation approach for two and three-body correlations
its numerical implementation is also discussed. Finally, co
puter simulation details and our most significant results
presented in Sec. III.

II. INHOMOGENEOUS INTEGRAL EQUATION
APPROACH

A. The formalism

The source particle method of Percus@16# was applied by
Attard @11# in order to take advantage of the inhomogeneo
integral equation treatments so as to calculate triplet corr
tion functions. Basically, it reduces to consider a tagged p
ticle as source of an external potential and then use an e
relation between one- and two-particle properties in the p
ence of external potentials~either the BG equation@14# or
one of the TZLMBW equations@13#!. Three-particle proper-
ties are evaluated by solving the OZ equation supplemen
with a given closure. The approximation implicit in the clo
sure corresponds to the three-particle level and it thus tu
out to be considerably more accurate when computing t
particle properties. Some examples of the efficiency of t
approach using different closure relations for LJ and ha
sphere~HS! fluids can be found in Refs.@15# and @17,18#,
respectively.

As mentioned before, in this method a given particle in
triplet is considered as the source of an external field, an
therefore responsible for the inhomogeneities in the sys
that should reflect in the integral equation. One can th
calculate density profiles and pair distribution functions co
ditioned to this particle being taken as a source. Since
source particle is identical to other system particles th
quantities are actually two- and three-body properties of
fluid.

The inhomogeneous OZ equation establishes the relat
ship between the total correlation functionh0

(2)(r1 ,r2) and
the direct correlation functionc0

(2)(r 1 ,r 2) in the presence of
the inhomogeneity,

h0
(2)~r 1 ,r 2!5c0

(2)~r 1 ,r 2!

1E dr 4r~r 4!c0
(2)~r 1 ,r 4!h0

(2)~r 4 ,r 2!. ~2!

Although the third particle~source particle! does not ex-
plicitly appear in the integral equation, it is implicit in th
notation f 0(r 1 ,r 2) which indicates that particles 1 and 2 a
subject to the external potential induced by particle 0. A
consequence, the inhomogeneous pair functions obta
from Eq. ~2!, g0

(2)(r 1 ,r 2) represent conditional probabilitie
which can be used to calculate the three-body distribut
function g(3),

g(3)~r 0 ,r 1 ,r 2!5g(2)~r 1!g(2)~r 2!g0
(2)~r 1 ,r 2!. ~3!

to
3-2
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while the inhomogeneous density profile will yield the bu
pair-distribution function.

In the present problem the system has axial symm
because the external potential depends only on the separ
from the origin~source!. The pair potentialV(r 12) @see Eq.
~1!#, in the reference frame of the source particle, depend
the distances of the particles from the source and the a
between them. This axial symmetry makes possible to
press the integral equation in terms of the polar coordina

s(2)~r 1 ,r 2 ,u12!5h(2)~r 1 ,r 2 ,u12!2c(2)~r 1 ,r 2 ,u12!

5E dr4r~r 4!c(2)~r 1 ,r 4 ,u14!h
(2)~r 4 ,r 2 ,u42!.

~4!
b
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As long as three unknown functions are present in Eq.~4!,
two more equations are needed. One of them is the clo
relation connecting the pair potential and the direct corre
tion function, and the other is the density profile governed
the external field.

Among the possible closures containing translationally
variant functions, and therefore suitable for this problem,
HNC approximation has been used:

h(2)~r 1 ,r 2 ,u12!5exp@h(2)~r 1 ,r 2 ,u12!2c(2)~r 1 ,r 2 ,u12!

2bV~r 1 ,r 2 ,u12!#21, ~5!

whereb5(kBT)21 is the inverse temperature. A hybridize
closure, the Zerah-Hansen@9# approach,
g(2)~r 1 ,r 2 ,u12!5H 12
exp@m~r 12!„2vatt~r 1 ,r 2 ,u12!1s(2)~r 1 ,r 2 ,u12!…#21

m~r 12!
J exp@2bv rep~r 1 ,r 2 ,u12!# ~6!
of
or-
des
the
e
ted
eg-

ard
-
se
was also used for the LJ case for which it was found to
very accurate. Herem(r 12)512exp(2ar12) and the mixing
parametera is obtained requiring thermodynamic cons
tency in the approximation at the two-particle level. The
teraction potential has been split into repulsive,v rep(r ), and
attractive,vatt(r ), contributions using the Weeks-Chandle
Andersen decomposition@19#. Following Attard@11#, a Leg-
endre transformation is applied to all the angular functions

f̂ n5
2n11

2 E
21

1

d~cosu! f ~cosu!Pn~cosu!, ~7!

f ~cosu!5 (
n50

`

f̂ nPn~cosu!, ~8!

by which the OZ decouples into

ĥn~r 1 ,r 2!2 ĉn~r 1 ,r 2!

5
4p

2n11E0

`

dr4r 4
2ĉn~r 1 ,r 4!r~r 4!ĥn~r 4 ,r 2!.

~9!

The density profile has been evaluated via the TZLMB
relation @13#

¹r~r 1!52br~r 1!¹V~r 1!

2br~r 1!E dr 2r~r 2!h~r 1 ,r 2!¹V~r 2!. ~10!

After projection of the gradient onto the appropriate
rection and integrating over the angular coordinates, the
pression above reads
e

-

s

x-

]r~r 1!

]r 1
52br~r 1!

]V~r 1!

]r 1
22pbr~r 1!

3E
21

1

dxE
0

`

dr2r 2
2r~r 2!h(2)~r 1 ,r 2 ,x!x

]V~r 2!

]r 2
.

~11!

Once the Legendre transformation is applied, Eq.~11! re-
duces to

]r~r 1!

]r 1
52br~r 1!

]V~r 1!

]r 1

2
4pbr~r 1!

3 E
0

`

dr2r 2
2r~r 2!ĥ1~r 1 ,r 2!

]V~r 2!

]r 2
.

~12!

B. Numerical details

The Legendre transforms and the convolution in Eq.~9!
constitute the core of the computational costs in this type
calculation. Following Attard we have used a discretized
thogonal version of the Legendre transform, where the no
of the angular integration are defined by the roots of
Legendre polynomialPn(x), if the Legendre series includ
all Pl(x) with l<n. These transforms have been evalua
using between 60 and 80 roots by means of the quick L
endre transform algorithm suggested in Ref.@11#. The treat-
ment of long ranges follows the ideas proposed by Att
@12# and Fushiki@15#, resorting to a replacement of the in
homogeneous distribution functions by their bulk pha
counterparts beyond certain cutoff distance,r c ~in this case
r c56s).
3-3
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For simple cases, convergence is sufficiently fast usin
mixing iterates algorithm, but for the stringent conditio
which correspond to a supercooled state, we had to reso
a more effective numerical approach, namely the general
minimal residual algorithm for nonlinear systems of equ
tions @20#. It basically considers the solution of

G@s#5s2M @s#50, ~13!

whereG@s# is a vector functional andM represents the op
erations involving the OZ equation supplemented by the c
sure. The elements ofs are the coefficientssl(r 1 ,r 2), thus 60
coefficients discretized over 150 grid points will use up 1
6031503150 words of memory. The previously define
function s, in the (n11)th iteration is estimated by

sn115sn1ds ~14!

and ds is expanded in terms ofk orthogonal polynomials
which define search directions,pj , j 51, . . . ,k, i.e., ds
5( j 51

k ajpj , being p052r0 /uur0uu (r05s2M @s#) and the
subsequentpj obtained by Gram-Schmidt orthogonalizatio
The coefficientsaj are optimized so that the norm

uuG@sn#1(
j 51

k

ajḠ@sn ,pj #uu ~15!

is minimized.Ḡ(s;p) is the directional derivative ofG at the
given points in the directionp. For the present problem th
optimal balance between storage and efficiency is achie
using five search directions. Note that memory use has t
optimized, since each search direction will occupy the sa
amount of storage as each set of coefficientsf l(r 1 ,r 2).

As to the external TZLMBW equation, the Broyles mix
ing iterative procedure has proven to be efficient enough
guarantee convergence. The particle exchange symmet
the inhomogeneous pair functions for a given configurat
with fixed source particle introduces some simplifications
the calculation, and one of them is the reduction of mem
requirements. Thus a typical single precision calculation
ing 160 grid points for the two radial coordinates of t
triplet configuration, 60 angular grid points and five sea
directions requires about 45 Mb of storage.

III. RESULTS

In this work, classical MD simulations sampling the c
nonical ensemble (NVT) were performed for compariso
purposes, making use of theDL-POLY program@21#. All the
systems consisted of 1372 particles embedded in a cubic
with periodic boundary conditions. In particular, the LJ sy
tem was simulated at constant reduced density,r* 50.85 and
T* 50.73. The icosahedral system was simulated at cons
reduced density,r* 50.88 at bothT* 51.6 andT* 50.5,
which correspond to a proper liquid and a supercooled st
respectively. The latter was reached by a stepwise equ
rium cooling coupling the system to a heat bath atTb* (t).
Then we cooled the system linearly in time,Tb* (t)5Ts* -gt,
with g being the cooling rate, andt the simulation time,
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using a Berendsen thermostat. The system was cooled
g541010 s21 from T* 51.6 down to the supercooled state

The simulated pair-correlation functions for the LJ syste
are shown in the upper frame of Fig. 2 together with vario
theoretical approaches used. One can see that the ZH
proach is in extraordinary agreement with the simulat
data. If one implements the ZH approximation on the thr
particle level to obtain a corresponding ZH3 approach,
results are completely indistinguishable from the simple Z
Note that the mixing parametera in the ZH3 is obtained
from the two-particle approximation, since the calculation
the isothermal compressibility from the inhomogeneous
proach is not accurate enough@12# to implement a thermo-
dynamic consistency loop.

The same can be said for the Ih pair potential in the liq
state (T* 51.6), whose pair-distribution functions are d
picted in the lower graph of Fig. 2. In the latter case one s
that the use of the HNC3 improves upon the pair HNC,
was already established by Attard@12#. Nonetheless the
HNC3 is still outperformed by the ZH and RHNC approx
mations.

Now when the system is cooled down the situation ra
cally changes. First, the ZH equation is unable to reach th
modynamic consistency achieving a minimum discrepa
for a50, i.e., for the soft mean spherical approximati
~SMSA!. These results together with a RHNC calculati
using Lado’s free energy optimization criterium for the re
erence hard-sphere fluid diameter, are presented in Fig
One immediately appreciates that the pair approximati
completely miss the clear shoulder appearing on the sec
coordination sphere, feature which results from the cool
process. Now, on the three-particle level, we observed
implementation of the SMSA yields rather poor results, n
included in Fig. 3. This is not surprising given its line

FIG. 2. Pair-distribution functions for LJ system atT* 50.73
~upper frame! and Ih normal liquid case atT* 51.6 ~lower frame!,
obtained both from different theoretical approaches and MD co
puter simulation.
3-4
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nature. On the other hand, the HNC3, although misses so
what the intensity of the peaks, reproduces the exact pos
and shape of the shoulder in the second coordination sph
As mentioned before, this shoulder is a direct conseque
of the cooling process and results from the preferential ico
hedral ordering of the Dzugutov’s supercooled syste
which is not present either in the heightT Ih or LJ liquids. It
seems now evident that a correct geometric description
supercooled structure of a glass-forming system requires
proximations at the three-particle level, in particular sin
the icosahedral ordering strongly deviates from the ha
sphere high density liquid which furnishes the reference s
tem in approximations like the RHNC.

In order to provide some insight into the triplet structu
we have analyzed the behavior of the functiont(r ,s,t)5 ln
@g(3)(r ,s,t)/g(r )g(s)g(t)#. The denominator of the argu
ment is nothing but Kirkwood’s superposition approximati
~KSA!, i.e., the simplest approach forg(3)(r ,s,t). Then
t(r ,s,t) is essentially an excess triplet potential of me
force if one considers that the KSA represents the low d
sity ~ideal! limit of the three-body correlations. Thet(r )
5t(r ,r ,r ), for equilateral triangle configurations, at di
tancesr corresponding to the positions of the first peaks
g(r ), are shown in Fig. 4 comparing the LJ liquid with the
supercooled case. The departure oft(r ) from zero measures
the correction to the KSA, a positive value means that
triplet is more probable than is predicted by the KSA, and
the contrary, a negative value indicates that such triplets
cur less frequently than predicted by the classical ansatz
the LJ liquid, the HNC3 results are in a good agreement w
simulation results particularly at short distances, confirm
the remarkable performance of this approximation for t
type of system@12,18#. On the other hand, we observed th
in the Ih supercooled case the deviations from the KSA
strongly positive at short distances. This and other featu
of the t(r ) are qualitatively reproduced by the HNC3. Th
deviations, which are considerable, can mostly be ascribe
the discrepancies in the amplitude of theg(r ), which are
magnified in the triple product occurring in the denomina

FIG. 3. Pair-distribution functions for Ih supercooled liquid
T* 50.5, obtained both from different theoretical approaches~see
text! and MD computer simulations.
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of t(r ). This is further confirmed below, where triple corr
lations are directly analyzed and a better agreement is ex
ited.

Another alternative to provide a 3D image of the sho
range topology of the systems under study is by calcula
the triplet correlation function of isosceles triangle config
rations, i.e.,g(3)(r ,s,u), with r 5s, where u is the angle
betweenr and s. These functions have also been compu

FIG. 4. t(r ) calculated from the HNC3 approach is compar
with MD simulation results, both for the LJ case and the Ih sup
cooled liquid.

FIG. 5. Theoretical and simulation results of the triplet corre
tion function of isosceles triangle configurations for the LJ case
plotted vsu at ther values corresponding to the first two maxima
g(r ) ~see Fig. 2!. Those values are specified within the legend b
The intensity ofg(3)(r ,r ,u) for r 252.06 has been multiply by 5 to
be plotted at the samey axis scale as the one corresponding to t
first coordination shell.
3-5
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and shown in Fig. 5 and 6 for the LJ fluid and Ih supercoo
system, respectively. The chosen values ofr correspond to
the first two maxima ofg(r ) and the position of the shoulde
in the Ih supercooled liquid. Now, the agreement, both
the LJ and Ih cases, is fair. There is a substantial differe

FIG. 6. The same as Fig. 5 for the Ih supercooled case. For
sake of clarity eachr value, corresponding to the first two maxim
of g(r ) plus the position of the shoulder of the second peak~see
Fig. 3!, are depicted from up to bottom frames~see legend boxes!.
R

s.

01120
d

r
e

in the three-body correlation of the LJ fluid and the Ih sup
cooled case, in particular the maximum corresponding to
second coordination sphere correlations present around 1
(90° in the LJ fluid! is split in two (110°-120° and 80°-90°)
in the latter case. This, in principle, might be ascribed to
larger coordination of the Ih supercooled liquid, and it
correctly reproduced by the HNC3 approximation. It is n
obvious whether the five maxima ing(3)(r ,s,u) for the
second-neighbor shell can be correlated with the fivefo
coordination characteristic of icosahedral ordering, but t
feature should nonetheless be born in mind for a more
tailed geometrical analysis.

In summary, in this work we have analyzed the perfo
mance of the inhomogeneous Ornstein-Zernike approach
ing a HNC closure to determine the pair and triplet struct
in a system characterized by an icosahedral short-range
dering that considerably deviates from ‘‘classical’’ well b
haved liquids like the LJ or HS fluids. This type of syste
which proves difficult to tackle in terms of two-particle ap
proximations, is amenable to be described by the HNC3
proach. This indicates that the three-body geometric inf
mation implemented in the inhomogeneous closure
essential for a correct description of this class of fluids a
presumably glasses. Thus, this approach will be relevan
study other glass-forming systems, in particular highly asy
metric and non additive mixtures. Work on these issues i
progress.
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